Петоъгълник
Петоъгълникът (също и пентагон, от старогръцки: πεντα + γωνία – „пет“ + „ъгъл“) е многоъгълник с пет страни и ъгли.[1] Сборът на всички вътрешни ъгли е 540° (3π). Петоъгълникът е единственият многоъгълник с равен брой страни и диагонали – по 5.
Правилен петоъгълник
[редактиране | редактиране на кода]При правилния петоъгълник всички страни и ъгли са равни. Вътрешният ъгъл е 108°, а външният и централният – 72°. Диагоналите на правилния петоъгълник образуват петолъчна звезда, наречена пентаграм.
Дължина на диагонала
[редактиране | редактиране на кода]Дължината на диагоналът на правилен петоъгълник със страна а
Или съотношението на дължините на диагонал D и страна a е златното сечение.
Радиус на описаната окръжност
[редактиране | редактиране на кода]Дължината на радиусът на описаната окръжност R на правилен петоъгълник със страна a
Лице
[редактиране | редактиране на кода]Лицето S на правилен петоъгълник може да бъде намерено по три начина:
- По страната a:
- По радиуса R на описаната окръжност:
- По радиуса r на вписаната окръжност (т.е. апотемата):
Построение
[редактиране | редактиране на кода]Тъй като 5 е просто число на Ферма, правилен петоъгълник може да бъде построен с линийка и пергел:[2]
Използване
[редактиране | редактиране на кода]Петоъгълни пана
[редактиране | редактиране на кода]Възможностите за покритие на равнината с изпъкнали петоъгълници се изучават системно от началото на 20в., като в 2017 г. с помощта на компютър е доказано твърдението, че са възможни само 15 варианта.[3]
кайрско петоъгълно пано |
цветовидно петоъгълно пано |
призматично петоъгълно пано |
Непериодични моноедрични покрития
[редактиране | редактиране на кода]С петоъгълници могат да бъдат постигани пълни покрития с център на симетрия за всеки порядък над 2. [4]
5-кратна ротационна симетрия |
6-кратна ротационна симетрия (на Хиршхорн) |
7-кратна ротационна симетрия |
Шестоъгълно-петоъгълни покрития на равнината
[редактиране | редактиране на кода]Лесно се установява, че шестоъгълник може да бъде разложен, и то по няколко начина, на комбинация от неправилни петоъгълници. Доколкото шестоъгълниците запълват равнината, това остава в сила и при разлагането им.
Покритие с един тип „половинка“. |
Покритие с един тип „третинка“. |
Покритие с един тип „четвъртинка“. |
Покритие със смесена комбинация (3+9). |
|
Вижте също
[редактиране | редактиране на кода]Източници
[редактиране | редактиране на кода]- ↑ Речник на българския език, том 12, стр. 325, БАН, 2004
- ↑ Constructible Polygon, mathworld.wolfram.com
- ↑ Rao, Michaël (2017), "Exhaustive search of convex pentagons which tile the plane" (PDF), Manuscript: 16, Bibcode:2017arXiv170800274R (неофициална публикация
- ↑ Klaassen, Bernhard. Rotationally symmetric tilings with convex pentagons and hexagons // Elemente der Mathematik 71 (4). 2016. DOI:10.4171/em/310. с. 137 – 144.
|