Квадратно число
В математиката, квадратно число или точен квадрат – това е число, получено при повдигането на квадрат (виж степенуване на втора степен) на цяло число; с други думи, това е произведението на едно число със себе си.[1] Например 9 е квадратно число, тъй като може да бъде записано под формата 3 × 3.
Обичайно за квадратът на числото не се използва , а равностойността му , като се произнася „на квадрат“. Името квадрат произлиза от едноименната геометричната форма, защото да намерим квадрата на числото е същото, като да намерим лицето на квадрат със страна .
Квадратните числа са неотрицателни (т.е. са по-големи или равни на нула). За всяко естествено число квадратното число е , като e нулевото квадратно число (лицето на квадрат със страна 0). За едно число се казва, че е квадратно (или точен квадрат), когато неговият корен квадратен отново е цяло число. Например , значи 9 е точен квадрат.
Цяло положително число, което няма делител точен квадрат различен от 1, се нарича безквадратно число.
Списък на квадратните числа
[редактиране | редактиране на кода]Точните квадрат (последователност A000290 в OEIS) до 602 = 3600 са:
- 02 = 0
- 12 = 1
- 22 = 4
- 32 = 9
- 42 = 16
- 52 = 25
- 62 = 36
- 72 = 49
- 82 = 64
- 92 = 81
- 102 = 100
- 112 = 121
- 122 = 144
- 132 = 169
- 142 = 196
- 152 = 225
- 162 = 256
- 172 = 289
- 182 = 324
- 192 = 361
- 202 = 400
- 212 = 441
- 222 = 484
- 232 = 529
- 242 = 576
- 252 = 625
- 262 = 676
- 272 = 729
- 282 = 784
- 292 = 841
- 302 = 900
- 312 = 961
- 322 = 1024
- 332 = 1089
- 342 = 1156
- 352 = 1225
- 362 = 1296
- 372 = 1369
- 382 = 1444
- 392 = 1521
- 402 = 1600
- 412 = 1681
- 422 = 1764
- 432 = 1849
- 442 = 1936
- 452 = 2025
- 462 = 2116
- 472 = 2209
- 482 = 2304
- 492 = 2401
- 502 = 2500
- 512 = 2601
- 522 = 2704
- 532 = 2809
- 542 = 2916
- 552 = 3025
- 562 = 3136
- 572 = 3249
- 582 = 3364
- 592 = 3481
Свойства
[редактиране | редактиране на кода]Числото m е квадратно, ако и само ако m на брой квадратчета образуват квадрат:
За единица площ се определя площта на единичния квадрат (1 × 1). Следователно, квадрат с дължина на страните n има площ (или лице) n2.
Изразът за n-тия квадрат е n2. Това също е равно на сумата от първите n нечетни числа, както се вижда от графиката по-горе, където на лицето на предишния квадрат се добавят нечетен брой точки (показани в лилаво). Формулата е следната:
Така например 52 = 25 = 1 + 3 + 5 + 7 + 9.
Има няколко рекурсивни методи за изчисляване на квадратно число.
Разликата между всеки точен квадрат и неговия предшественик е , т.е. всеки следващ точен квадрат може да се изчисли по предишния посредством . С други думи, разликата между вторите степени на два последователни числа е сборът на двете числа – ако a и b са последователни числа (a+1=b), то b²-a²=a+b.
Освен това n-тото квадратно число може да бъде изчислено с удвояване на квадрата на предишното (n − 1), изваждане на квадрата на по-предишното (n − 2) и добавянето на 2, защото . Например,
- 2 × 52 − 42 + 2 = 2 × 25 − 16 + 2 = 50 − 16 + 2 = 36 = 62.
Число, което е с 1 по-малко от точен квадрат , е винаги равно на произведението на и (например 8 × 6 е равно на 48, а 72 е равно на 49). Така 3 е единственото просто число, по-малко с единица от точен квадрат.
Квадратно число също е сумата от две последователни триъгълни числа. Сумата на две последователни квадратни числа е центрирано квадратно число. Всеки нечетен точен квадрат е също и центрирано осмоъгълно число.
Още едно свойство на квадратното число (с изключение на 0) е, че има нечетен брой делители, докато другите естествени числа имат четен брой делители. Това е така, защото корен квадратен на числото образува двойка със себе си, за да се получи квадратното число, докато другите делители вървят по двойки.
В десетичната система, квадратът на число завършва само с цифрите 0, 1, 4, 5, 6 или 9, а именно:
- ако последната цифра е 0, квадратът завършва с 0 (всъщност последните две цифри са 00);
- ако последната цифра е 1 или 9, то квадратът свършва на 1;
- ако последната цифра е 2 или 8, то квадратът свършва на 4;
- ако последната цифра е 3 или 7, то квадратът свършва на 9;
- ако последната цифра е 4 или 6, то квадратът свършва на 6; и
- ако последната цифра номер е 5, квадратът завършва на 5 (всъщност последните две цифри са 25).
Квадратно число не може да бъде съвършено число.
При сумиране на първите n квадратни числа, има формула
Това се нарича квадратно пирамидално число. Първите са: (последователност A000330 в OEIS
0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, ...
Всички четни степени (четвърта, шеста, осма и така нататък) представляват точни квадрати.
Специални случаи
[редактиране | редактиране на кода]- На число във формат m5, където m са предходните цифри преди завършващото 5, неговият квадрат е във формат n25, където n = m(m + 1) и представлява числата преди 25. Например, квадратът на 65 може да бъде изчислен с n = 6 × (6 + 1) = 42, което значи, че квадратът на 65 е 4225.
- Ако числото е във формат m0, където m са предходните цифри преди завършващата 0, неговият квадрат е n00, където n = m2. Например, квадратът на 70 е 4900.
- Двуцифрено число във формат 5m, където 5 е десетицата, а m е единицата, има квадрат във формат aabb, където aa = 25 + m и bb = m2. Например за квадрат на 57 изчисляваме: 25 + 7 = 32 и 72 = 49, което означава, че 572 = 3249.
- Ако числото завършва на 5, неговият квадрат ще завърши на 5; по същия начин и ако завършва на 25, 625, 0625, 90625 … 8212890625, и т.н. Ако числото завършва на 6, квадратът му също завършва на 6, по същия начин и ако завършва на 76, 376, 9376, 09376 … 1787109376. Например квадратът на 55376 е 3066501376, като и двете завършват на 376. (Числата 5, 6, 25, 76 и т.н. са наречени автоморфни числа. Тяхната последователност е A003226 в OEIS.
Четни и нечетни квадратни числа
[редактиране | редактиране на кода]Квадратите на четните числа са четни (а в действителност кратни на 4), тъй като (2n)2 = 4n2.
Квадратите на нечетните числа са нечетни, тъй като (2n + 1)2 = 4(n2 + n) + 1.
От това следва и че квадратните корени на четните квадратни числа са четни числа, а квадратните корени на нечетните квадратни числа – нечетни.
Тъй като всички четни квадратни числа се делят на 4, то четните числа във формат 4n + 2 не са точни квадрати.
Тъй като всички нечетни квадратни числа са във формат 4n + 1, то нечетните числа във формат 4n + 3 не са точни квадрати.
Вижте също
[редактиране | редактиране на кода]Източници
[редактиране | редактиране на кода]Тази страница частично или изцяло представлява превод на страницата Square number в Уикипедия на английски. Оригиналният текст, както и този превод, са защитени от Лиценза „Криейтив Комънс – Признание – Споделяне на споделеното“, а за съдържание, създадено преди юни 2009 година – от Лиценза за свободна документация на ГНУ. Прегледайте историята на редакциите на оригиналната страница, както и на преводната страница, за да видите списъка на съавторите.
ВАЖНО: Този шаблон се отнася единствено до авторските права върху съдържанието на статията. Добавянето му не отменя изискването да се посочват конкретни източници на твърденията, които да бъдат благонадеждни. |