Теорема на Бейс
Теорема на Бейс по името на Томас Бейс (Thomas Bayes) се използва в теорията на вероятностите за изчисляване на вероятността за настъпване на дадено събитие, след като вече е известна част от информацията за него.
Формулировка
[редактиране | редактиране на кода]- ,
където
- – вероятност за настъпване на събитието A;
- – Условна вероятност за настъпване на събитието A при положение, че събитието B е настъпило (апостериорна вероятност);
- – Условна вероятност за настъпване на B при положение, че A е настъпило;
- – вероятност за настъпване на събитието B.
Извод
[редактиране | редактиране на кода]За да изведем теоремата, трябва да напишем определението за условна вероятност. Вероятността за настъпване на събитието A при положение, че B вече е настъпило е:
Аналогично, вероятността за настъпване на B при положение, че A се е сбъднало е:
Като комбинираме двете уравнения, получаваме:
Тази лема понякога се намира „правило за умножение на вероятности“ Остава да разделим на P(B), при положение, че тази вероятност не е нулева, за да получим Теоремата на Бейс:
Примери
[редактиране | редактиране на кода]Тест за болест
[редактиране | редактиране на кода]Задача: Фармацевтична компания произвежда тест, за който се твърди че е надежден: ако пациентът е болен, този тест в 99% от случаите ще даде положителен резултат, а ако пациентът е здрав, в 99% от случаите тестът ще е отрицателен. Ако тази болест засяга 0,5% от населението, то каква е вероятността пациентът да е болен, ако тестът е положителен?
Решение:
- Означаваме с Pr(B) вероятността даден пациент да е болен, която според данните от задачата е равна на 0.005
- Означаваме с Pr(Z) вероятността даден пациент да е здрав, която е очевидно 0.995
- Означаваме с Pr(+|B) вероятността тестът да даде положителен резултат, ако пациентът е болен, т.е. 0.99
- Означаваме с Pr(+|Z) вероятността тестът да даде положителен резултат, a пациентът да е здрав, т.е. 0.01
- Означаваме с Pr(+) тестът да даде положителен резултат, независимо дали пациентът е болен или не
- Търсената вероятност е Pr(B|+) т.е. вероятността пациентът да е болен, ако тестът е положителен
По теоремата на Бейс:
Вероятността Pr(+) е равна на вероятността тестът да е положителен, независимо дали пациентът е здрав или болен. Тази вероятност е равна на вероятността тестът да е положителен и пациентът да е болен, плюс вероятността тестът да е положителен, а пациентът да е здрав. Или:
- (теорема)
Понеже
Следва
Или търсената вероятност е:
или в крайна сметка:
Което означава, че вероятността даден пациент да е болен, ако тестът е положителен е само около 33%, което не е практично за нуждите на медицината, т.е. въпреки впечатляващите вероятности в условието, тестът е слаб. Това означава, че тестовете за болести следва да се произвеждат с точност, много по-голяма от 99%.
Анти-спам филтри
[редактиране | редактиране на кода]Съществуват анти-спам филтри за електронна поща, основаващи се на теоремата на Бейс. Тези програми изчисляват вероятността дадено електронно съобщение да е спам по следния начин:
Където е вероятността дадено съобщение да е спам, при положение че съдържа определени думи и изрази в него, е вероятността тези думи или изрази да се съдържат в спам-съобщение, е броят на спамовете към общия брой на съобщенията, т.е. вероятността всяко съобщение да е спам, а е вероятността тези думи да бъдат намерени в нормално електронно съобщение. Идеята е предложена за пръв път от английския програмист Пол Греъм.
Външни препратки
[редактиране | редактиране на кода]- Условна вероятност, Формула на Бейс Архив на оригинала от 2008-01-08 в Wayback Machine., лекции по вероятности на проф. Димитър Въндев
Тази страница частично или изцяло представлява превод на страницата Bayes' theorem в Уикипедия на английски. Оригиналният текст, както и този превод, са защитени от Лиценза „Криейтив Комънс – Признание – Споделяне на споделеното“, а за съдържание, създадено преди юни 2009 година – от Лиценза за свободна документация на ГНУ. Прегледайте историята на редакциите на оригиналната страница, както и на преводната страница, за да видите списъка на съавторите.
ВАЖНО: Този шаблон се отнася единствено до авторските права върху съдържанието на статията. Добавянето му не отменя изискването да се посочват конкретни източници на твърденията, които да бъдат благонадеждни. |