Наредена двойка
Облик
Наредената двойка е понятие с фундамантално значение за математиката. То се използва при дефиницията на друго важно математическо понятие – функция. Наредена двойка се дефинира по различен начин, но винаги така, че да са изпълнени следните две условия:
- за всяка наредна двойка могат да се определят точно два (не непременно различни) индивидууми, единият от които се нарича първи, а другият – втори елемент на наредената двойка,
- за всеки два индивидууми и съществува точно една наредена двойка, така че да е нейният първи елемент, а – вторият.
Наредена двойка с първи елемент и втори елемент се бележи с или .
Във формализираните на основата на теорията на множествата математически теории (вж. Никола Бурбаки) всеки математически обект е множество.
Това позволява наредена двойка да се дефинира чрез (предложение на Казимеж Куратовски, 1921 г.) или (предложение на Норберт Винер, 1914 г.).
Формално записана, дефиницията на Куратовски гласи: Едно множество e наредена двойка тогава и само тогава, когато .
Вижте също
[редактиране | редактиране на кода]Литература
[редактиране | редактиране на кода]- Куратовски К., Увод в теория на множествата и топологията, изд. „Наука и изкуство“, София, 1979
- Deiser O., Einführung in die Mengenlehre, Springer, Berlin 2004, ISBN 3-540-20401-6
- Enderton H., Elements of Set Theory, Academic Press Inc., New York, 1977, ISBN 978-0-12-238440-0
- Hausdorff F., Grundzüge der Mengenlehre, Veit & Comp., Leipzig, 1914 (преиздадена от Chelsea, New York 1949, 1965, 1978)