Канторово множество
Канторовото множество е математически обект, представляващ множество от точки, онагледявано най-лесно чрез повтаряема (до безкрайност) геометрична конструкция. Той носи името на германския математик Георг Кантор, който през 1883 го коментира и установява нетривиалните му свойства,[1] макар впоследствие да се изяснява, че първоначалното му откритие е направено през 1875 от Хенри Джон Стивън Смит.[2]
Най-простата конструкция на канторовото множество представлява премахване на средната третина от линеарен сегмент и повтаряне на операцията върху получените части:
![1D](http://upload.wikimedia.org/wikipedia/commons/thumb/5/56/Cantor_set_in_seven_iterations.svg/450px-Cantor_set_in_seven_iterations.svg.png)
Тази конструкция са обобщава за обекти с по-висока размерност, квадрати, кубове и многомерните им аналози, като множеството бива наричано „Канторов прах“. След работите на Беноа Манделброт това се счита и за един от най-простите фрактали.
![]() |
![]() |
Нетривиално свойство на Канторовото множествое, че то е равномощно на континуума, от който е получено.
Източници
[редактиране | редактиране на кода]- ↑ Georg Cantor (1883) Über unendliche, lineare Punktmannigfaltigkeiten V [Върху безкрайните, линеарни точкови разнородни множества], Mathematische Annalen, том. 21, стр. 545 – 591
- ↑ Henry J.S. Smith (1875) On the integration of discontinuous functions. Proceedings of the London Mathematical Society, Series 1, том 6, стр. 140 – 153
![]() ![]() |
Тази страница частично или изцяло представлява превод на страницата Cantor set в Уикипедия на английски. Оригиналният текст, както и този превод, са защитени от Лиценза „Криейтив Комънс – Признание – Споделяне на споделеното“, а за съдържание, създадено преди юни 2009 година – от Лиценза за свободна документация на ГНУ. Прегледайте историята на редакциите на оригиналната страница, както и на преводната страница, за да видите списъка на съавторите.
ВАЖНО: Този шаблон се отнася единствено до авторските права върху съдържанието на статията. Добавянето му не отменя изискването да се посочват конкретни източници на твърденията, които да бъдат благонадеждни. |