Закон на Стефан – Болцман
Законът на Стефан – Болцман описва мощността, излъчена от абсолютно черно тяло от гледна точка на неговата температура. По-точно, законът на Стефан – Болцман гласи, че общата енергия, излъчена от единица площ на абсолютно черно тяло във всичките дължини на вълната за единица време, , е право пропорционална на четвъртата степен на термодинамичната температура T на черното тяло:
Константата на пропорционалност σ, наречена константа на Стефан – Болцман, се извежда чрез други познати естествени константи. Стойността на константа е:
където k е константата на Болцман, h е константата на Планк, а c е скоростта на светлината във вакуум. Следователно, при 100 K енергийният поток е 5,67 W/m2, а при 1000 K е 56 700 W/m2. Енергетичната яркост (ват на квадратен метър на стерадиан) се извежда чрез
Тяло, което не абсорбира цялото попадащо лъчение (понякога наричано „сиво“ тяло), излъчва по-малко обща енергия, отколкото абсолютно черно тяло и се характеризира с емисивност, :
Излъчването има измерения на поток на енергията (енергия за единица време на единица площ) и единиците в SI за измерване са джаул за секунда на квадратен метър или еквивалентното ват на квадратен метър. SI единицата за абсолютна температура T е келвин [K]. е емисивността на „сивото“ тяло. Ако то е абсолютно черно тяло, то . В по-общия и релативистичен случай емисивността зависи от дължината на вълната, .
Общата мощност, излъчена от даден обект, се намира по формулата:
където A е площта на тялото. Частиците съразмерни с дължината на вълната,[1] метаматериали[2] и други наноструктури не са обект на ограниченията на оптиката на лъчите и могат да бъдат проектирани по такъв начин, че да надминават закона на Стефан – Болцман.
История
[редактиране | редактиране на кода]Законът е изведен от Йозеф Стефан през 1879 г. на базата на експериментални измервания, направени от Джон Тиндал. Изведен е и от Лудвиг Болцман през 1884 г. на базата на теоретични съображения, използвайки термодинамика. Болцман взема предвид определен идеален топлинен двигател със светлина като работно вещество, вместо газ. Законът е много точен единствено за абсолютно черни тела и работи като добро приближение за повечето „сиви“ тела. Стефан публикува закона в статията Über die Beziehung zwischen der Wärmestrahlung und der Temperatur (Относно връзката между топлинното излъчване и температурата) във Виенската академия на науките.
Примери
[редактиране | редактиране на кода]Температура на Слънцето
[редактиране | редактиране на кода]Чрез този закон Стефан успява да определи температурата на повърхността на Слънцето. Благодарение на данни от швейцарския физик Шарл Соре, Стефан научава, че енергийният поток от Слънцето е 29 пъти по-голям от енергийния поток на определен нагрят метал (тънка пластина). Кръгла пластина е поставена на такова разстояние от измерващото устройство, че се вижда под същия ъгъл като Слънцето. Соре преценява температурата на пластината да е приблизително от 1900 °C до 2000 °C. Стефан предполага, че 1/3 от енергийния поток на Слънцето се абсорбира от атмосферата на Земята, затова взима за правилния слънчев енергиен поток стойност, която е 3/2 пъти по-голяма от стойността на Соре, или по-точно 29 × 3/2 = 43,5.
Прецизни измервания на атмосферната абсорбция са направени едва през 1888 г. и 1904 г. Температурата, която получава Стефан е средна стойност на предните, 1950 °C и абсолютната термодинамична 2200 K. Тъй като 2,574 = 43,5, от закона следва, че температурата на Слънцето е 2,57 пъти по-голяма от температурата на пластината, така че Стефан получава стойност от 5430 °C или 5700 K (съвременната стойност е 5778 K[3]).
Температура на звездите
[редактиране | редактиране на кода]Температурата на звезди, различни от Слънцето, може да бъде апроксимирана, използвайки подобни начини, като излъчената енергия се счита за излъчване от абсолютно черно тяло.[4] Така:
където L е светимостта, σ е константата на Стефан – Болцман, R е звездният радиус, а T е ефективната температура. Същата формула може да бъде използвана, за да се изчисли приблизителния радиус на звезда от главна последователност по отношение на Слънцето:
където R☉ е слънчевият радиус, L☉ е слънчевата светимост и така нататък.
Чрез закона на Стефан – Болцман астрономите могат лесно да правят предположения за радиусите на звезди. Законът, също така, се среща в термодинамиката на черните дупки в така нареченото излъчване на Хокинг.
Ефективна температура на Земята
[редактиране | редактиране на кода]По подобен начин може да се изчисли ефективната температура на Земята T⊕ като се приравни приетата енергия от Слънцето и енергията, излъчена от Земята, под приближение на абсолютно черно тяло. Светимостта на Слънцето, L⊙, се извежда от:
На Земята тази енергия преминава през сфера с радиус a0, разстоянието между Земята и Слънцето, а облъчеността (получена мощност на единица площ) се извежда от:
Земята има радиус R⊕ и следователно има напречно сечение . Лъчистият поток (т.е. слънчевата мощност), абсорбиран от Земята се извежда от:
Считайки, че обмяната е в стабилно състояние, излъченият поток от Земята трябва да е равен на абсорбирания поток, следователно:
T⊕ тогава може да бъде намерена:
където T⊙ е температурата на Слънцето, R⊙ е радиусът на Слънцето, а a0 е разстоянието между Земята и Слънцето. Това дава ефективна температура от 6 °C на повърхността на Земята, считайки, че тя идеално абсорбира цялото лъчение, попадащо върху нея и няма атмосфера.
Земята има албедо от 0,3, което означава, че 30% от слънчевите лъчи, попадащи върху Земята, се разсейват обратно в космоса, без да се абсорбират. Ефектът на албедото върху температурата може да бъде приближен, като се счита, че абсорбираната енергия се умножава по 0,7, а планетата излъчва като абсолютно черно тяло. Това приближение намалява температурата с коефициент 0,771/4, което дава 255 K или 18 °C.[5][6]
Интересен въпрос е каква би била температурата на повърхността на Земята, ако тя беше абсолютно черно тяло и считайки, че тя достига равновесие с падащата слънчевата светлина. Това зависи от ъгъла на падане на слънчевите лъчи и от това през колко въздух са минали те. Когато Слънцето е в зенит и повърхността е хоризонтална, облъчването може да достигне 1120 W/m2.[7] Тогава законът на Стефан – Болцман дава температура от
или 102 °C. Над атмосферата резултатът е дори по-висок: 394 K.
Източници
[редактиране | редактиране на кода]- ↑ Absorption and scattering of light by small particles. Wiley, 1998. ISBN 0-471-29340-7. с. 123 – 126.
- ↑ "Beyond Stefan-Boltzmann Law: Thermal Hyper-Conductivity." 26 септември 2011.
- ↑ nssdc.gsfc.nasa.gov
- ↑ Luminosity of Stars // Australian Telescope Outreach and Education. Архивиран от оригинала на 2014-08-09. Посетен на 2017-09-11.
- ↑ Intergovernmental Panel on Climate Change Fourth Assessment Report. Chapter 1: Historical overview of climate change science Архив на оригинала от 2018-11-26 в Wayback Machine. с. 97
- ↑ Solar Radiation and the Earth's Energy Balance[неработеща препратка]
- ↑ Introduction to Solar Radiation // Newport Corporation. Архивиран от оригинала на 2013-10-29. Посетен на 2017-09-11.
Тази страница частично или изцяло представлява превод на страницата Stefan–Boltzmann law в Уикипедия на английски. Оригиналният текст, както и този превод, са защитени от Лиценза „Криейтив Комънс – Признание – Споделяне на споделеното“, а за съдържание, създадено преди юни 2009 година – от Лиценза за свободна документация на ГНУ. Прегледайте историята на редакциите на оригиналната страница, както и на преводната страница, за да видите списъка на съавторите.
ВАЖНО: Този шаблон се отнася единствено до авторските права върху съдържанието на статията. Добавянето му не отменя изискването да се посочват конкретни източници на твърденията, които да бъдат благонадеждни. |