Направо към съдържанието

Вероятностно пространство

от Уикипедия, свободната енциклопедия

В теорията на вероятностите, вероятностното пространство (англ. probability spacе) е понятие, с което се описва случайно (стохастично) явление, наричано още „опит“ (англ. experiment, trial). Например, вероятностно пространство може да се опише по отношение на опита „хвърляне на зар“.

Вероятностното пространство включва:

  • Пространство на елементарните (неразложими) събития (англ. sample space): бележи се с . Например, ако разгледаме хвърлянето на зар, всички възможни изходи са да се падне: , и всяко от тях е едно неразложимо събитие. Пространството на елементарните събития се характеризира с -мерност. Когато имаме опита „хвърляне на една монета“, множеството на елементарните събития е {лице,герб}, и то е едномерно. Ако обаче разгледаме опита „хвърляне на две монети едновременно“, тогава всеки един изход от опита се определя от значенията на първата и втората монети, което означава, че то вече е двумерно. Възможните изходи са: {лице,лице}, {лице,герб}, {герб,герб}, {лице,лице}. Вече тези наредени двойки изграждат множеството от елементарните събития във връзка с опита „хвърляне на две монети едновременно“.
  • Пространство на съставните (разложими) събития (англ. event space): бележи се със или . Например, ако се върнем на хвърлянето на зар и вземем събитието „пада се нечетно число“, тогава поради свойствата на зара, възможните изходи са , защото това са нечетните естествени числа от 1 до 6. „Пада се нечетно число“ е разложимо до тези три елементарни събития.
  • Вероятностна зависимост (функция), която задава вероятност едно събитие да се случи в границите от 0 до 1. „0“ означава, че събитието е невъзможно, а „1“ означава, че то ще се осъществи без съмнение. При събитието „пада се нечетно число“ последвало опита „хвърля се зар“ вероятността е . То също така представлява обединение на елементарните събития , за всяко от които вероятността е . Следователно, може да се заключи, че вероятността за едно събитие е сбор от вероятностите за настъпване на всяко от съставляващите го елементарни събития. [1]
  1. Тодоров, Д., Николов, К. Математика. Трето издание. София, УНСС, 2007.