Базис
Облик
За информацията в тази статия или раздел не са посочени източници. Въпросната информация може да е непълна, неточна или изцяло невярна. Имайте предвид, че това може да стане причина за изтриването на цялата статия или раздел. |
Базис на дадено линейно пространство е система, състояща се от линейно независими вектори, такива че всеки елемент на линейното пространство се представя като тяхна линейна комбинация. Броят на елементите на базиса се нарича размерност на линейното пространство. Определението за размерност е коректно, тъй като всеки два базиса на линейно пространство имат равен брой вектори. Ако базисът е съставен от безброй много вектори, то казваме, че пространството е безкрайномерно.
Примери за базиси:
- Нека е векторното пространство от всички координати , такива че и са реални числа. Тогава естествен начин за дефиниране на базис в пространството е изборът на двойката вектори и . Тогава произволен вектор от може да се представи като линейна комбинация от елементите на базиса, т.е. . Всеки два линейно независими вектора могат да играят ролята на базис на пространството (без значение ъгъла, който сключват, и дължините им), например (1,1) и (−1,2) също формират базис в .
- Нека означава векторното пространство на полиномите с реални коефициенти. Тогава базис на е . Това линейно пространство е безкрайномерно.
Тази статия за математически обект все още е мъниче. Помогнете на Уикипедия, като я редактирате и разширите.
|