Направо към съдържанието

Файл:Inclinedthrow.gif

Съдържанието на страницата не се поддържа на други езици.
от Уикипедия, свободната енциклопедия

Inclinedthrow.gif (400 × 288 пиксела, големина на файла: 374 КБ, MIME-тип: image/gif, зациклен, 102 кадъра, 10 сек)

Емблемата на Общомедия Този файл е от Общомедия и може да се използва от други проекти.

Следва информация за файла, достъпна през оригиналната му описателна страница.

Резюме

Описание
English: Trajectories of three objects thrown at the same angle (70°). The black object doesn't experience any form of drag and moves along a parabola. The blue object experiences Stokes' drag, and the green object Newton drag.
Дата
Източник Собствена творба
Автор AllenMcC.
други версии Inclinedthrow2.gif
GIF развитие
InfoField
 
This plot was created with Matplotlib.
Изходен код
InfoField

Python code

#!/usr/bin/python3
# -*- coding: utf8 -*-

import os
import inspect
from math import *
import numpy as np
from scipy.integrate import odeint
from scipy.optimize import newton
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import animation

# settings
mpl.rcParams['path.snap'] = False
fname = 'inclinedthrow'
size = 400, 288
l, w, b, h = 22.5/size[0], 1-23/size[0], 22.5/size[1], 1-23/size[1]
nframes = 102
delay = 8
lw = 1.
ms = 6
c1, c2, c3 = "#000000", "#0000ff", "#007100"

def projectile_motion(g, mu, pot, xy0, vxy0, tt):
    # use a four-dimensional vector function vec = [x, y, vx, vy]
    def dif(vec, t):
        # time derivative of the whole vector vec
        v = hypot(vec[2], vec[3])
        vxrel, vyrel = vec[2] / v, vec[3] / v
        return [vec[2], vec[3], -mu * v**pot * vxrel, -g - mu * v**pot * vyrel]

    # solve the differential equation numerically
    vec = odeint(dif, [xy0[0], xy0[1], vxy0[0], vxy0[1]], tt)
    return vec[:, 0], vec[:, 1], vec[:, 2], vec[:, 3]  # return x, y, vx, vy

g = 1.
theta  = radians(70)
v0 = sqrt(g/sin(2*theta))
vinf = 2.1
# use identical terminal velocity vinf for both types of friction
mu_stokes = g / vinf**1
mu_newton = g / vinf**2
x0, y0 = 0.0, 0.0
vx0, vy0 = v0 * cos(theta), v0 * sin(theta)

T = newton(lambda t: projectile_motion(g, 0, 0, (x0, y0), (vx0, vy0), [0, t])[1][1], 2*vy0/g)
nsub = 10
tt = np.linspace(0, T * nframes / (nframes - 1), (nframes - 1) * nsub + 1)

traj_free = projectile_motion(g, 0, 0, (x0, y0), (vx0, vy0), tt)
traj_stokes = projectile_motion(g, mu_stokes, 1, (x0, y0), (vx0, vy0), tt)
traj_newton = projectile_motion(g, mu_newton, 2, (x0, y0), (vx0, vy0), tt)

def animate(nframe, saveframes=False):
    print(nframe, '/', nframes)
    t = T * float(nframe) / nframes
    
    plt.clf()
    fig.gca().set_position((l, b, w, h))
    fig.gca().set_aspect("equal")
    plt.xlim(0, 1)
    plt.ylim(0, (h*size[1]) / (w*size[0]))
    plt.xticks([]), plt.yticks([])
    plt.xlabel('Distance', size=12)
    plt.ylabel('Height', size=12)
    
    plt.plot(traj_free[0][:nframe*nsub+1], traj_free[1][:nframe*nsub+1],
        '-', lw=lw, color=c1)
    plt.plot(traj_free[0][nframe*nsub], traj_free[1][nframe*nsub],
        'ok', color=c1, markersize=ms, markeredgewidth=0)
    
    plt.plot(traj_stokes[0][:nframe*nsub+1], traj_stokes[1][:nframe*nsub+1],
        '-', lw=lw, color=c2)
    plt.plot(traj_stokes[0][nframe*nsub], traj_stokes[1][nframe*nsub],
        'ok', color=c2, markersize=ms, markeredgewidth=0)
    
    plt.plot(traj_newton[0][:nframe*nsub+1], traj_newton[1][:nframe*nsub+1],
        '-', lw=lw, color=c3)
    plt.plot(traj_newton[0][nframe*nsub], traj_newton[1][nframe*nsub],
        'ok', color=c3, markersize=ms, markeredgewidth=0)
    
    if saveframes:
        # export frame
        dig = int(ceil(log10(nframes)))
        fsavename = ('frame{:0' + str(dig) + '}.svg').format(nframe)
        fig.savefig(fsavename)
        with open(fsavename) as f: content = f.read()
        content = content.replace('pt"', 'px"').replace('pt"', 'px"')
        with open(fsavename, 'w') as f: f.write(content)

fig = plt.figure(figsize=(size[0]/72., size[1]/72.))

os.chdir(os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))))
for i in range(nframes):
    animate(i, True)
os.system('convert -loop 0 -delay ' + str(delay) + ' frame*.svg +dither ' + fname + '.gif')
# keep last frame for two seconds
os.system('gifsicle -k32 --color-method blend-diversity -b ' + fname + '.gif -d' + str(delay) + ' "#0-' + str(nframes-2) + '" -d200 "#' + str(nframes-1) + '"')
for i in os.listdir('.'):
    if i.startswith('frame') and i.endswith('.svg'):
        os.remove(i)

Лицензиране

Аз, носителят на авторските права над тази творба, я публикувам тук под следния лиценз:
w:bg:Криейтив Комънс
признание на авторството споделяне на споделеното
Този файл се разпространява под лиценз Криейтив Комънс Признание — Споделяне на споделеното 3.0.
Можете свободно:
  • да споделяте – да копирате, разпространявате и излъчвате произведението
  • да ремиксирате – да адаптирате произведението
Съгласно следните условия:
  • признание на авторството – Трябва да посочите авторството, да добавите връзка към лиценза и да посочите дали са правени промени. Можете да направите това по всякакъв разумен начин, но не и по начин, оставящ впечатлението, че същият/същите подкрепят вас или използването по някакъв начин на творбата от вас.
  • споделяне на споделеното – В случай, че промените, видоизмените или използвайки като основа произведението, го надградите, то полученото производно произведение може да се разпространява само съгласно условията на същия или съвместим лиценз с оригиналния такъв.

Описания

Add a one-line explanation of what this file represents

Items portrayed in this file

изобразен обект

Някаква стойност без обект в Уикиданни

copyright status английски

copyrighted английски

15 декември 2008

source of file английски

original creation by uploader английски

История на файла

Избирането на дата/час ще покаже как е изглеждал файлът към онзи момент.

Дата/ЧасМиникартинкаРазмерПотребителКоментар
текуща16:10, 21 октомври 2020Миникартинка на версията към 16:10, 21 октомври 2020400 × 288 (374 КБ)Geek3adjusted friction coefficients such to make terminal velocity of both trajectories equal. In this case, the Newton projectile moves further.
12:57, 21 октомври 2009Миникартинка на версията към 12:57, 21 октомври 2009400 × 288 (453 КБ)AllenMcC.added Newton drag
00:40, 22 декември 2008Миникартинка на версията към 00:40, 22 декември 2008400 × 299 (393 КБ)AllenMcC.== Summary == {{Information |Description={{en|1=Trajectories of two objects thrown at the same angle. The blue object doesn't experience any drag and moves along a parabola. The black object experiences Stokes' drag.}} |Source=Own work by uploader |Author
20:12, 18 декември 2008Миникартинка на версията към 20:12, 18 декември 2008400 × 299 (393 КБ)AllenMcC.== Summary == {{Information |Description={{en|1=Trajectories of two objects thrown at the same angle. The blue object doesn't experience any drag and moves along a parabola. The black object experiences Stokes' drag.}} |Source=Own work by uploader |Author
04:07, 15 декември 2008Миникартинка на версията към 04:07, 15 декември 2008700 × 519 (636 КБ)AllenMcC.{{Information |Description={{en|1=Trajectories of two objects thrown at the same angle. The blue object doesn't experience friction and moves along a parabola. The black object experiences Stokes friction.}} |Source=Own work by uploader |Author=[[User:All

Следната страница използва следния файл:

Глобално използване на файл

Този файл се използва от следните други уикита:

Преглед на глобалната употреба на файла.